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Monte Carlo Simulations of the Yukawa
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The excess free energy f of the Yukawa one-component plasma is investigated
by means of Monte Carlo simulations. These simulations are performed in the
canonical ensemble within hyperspherical boundary conditions and f is com-
puted for various values of the coupling parameter 1 in the range 0.1�1�100
and of the screening parameter :* in the range 0.1�:*�6.
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simulations.

I. INTRODUCTION

Recently, many models involving Yukawa interactions have been proposed
to study the thermodynamic and structural properties of various systems
such that dusty plasmas, (1�4) dense plasmas, (5, 6) and colloids.(7, 8) In the
present paper, we consider the case of the Yukawa one-component plasma
(YOCP), i.e., a system made of N identical point charges q interacting via
an effective Yukawa pair-potential v:(r)=exp(&:r)�r, where : is the so-
called screening parameter. The hamiltonian of an YOCP enclosed in a
volume 4 of the usual Euclidean space R3 will be discussed in details in
Section II. In the thermodynamic limit, the properties of the model depend
solely upon the coupling parameter 1=;q2�ai (;=1�kT, k Boltzmann
constant, T temperature, and ai the ionic radius defined by 4?\a3

i �3=1,
where \=N�4 is the number density of ions) and upon the reduced screening
parameter :*=:ai .
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In this paper we report Monte Carlo (MC) simulations of the YOCP
in the canonical ensemble and within hyperspherical boundary conditions.
The idea of using the two dimensional (2D) surface of an ordinary sphere
to perform numerical simulations of a 2D fluid phase can be traced back
to a paper by J. P. Hansen et al. devoted to a study of the electron gaz at
the surface of liquid Helium.(9) Subsequently, the same idea was used to
study the crystalization of the 2D one-component plasma (OCP) (with log
interactions).(10) The generalization of the method to 3D systems, implying
the use of a 4D sphere (in short a hypersphere), is due to Caillol and
Levesque.(11) The method was subsequently used to study various models
pertaining to the field of chemical physics such that ionic and polar
fluids, (11) colloidal suspensions, (12, 13) and even the Lennard�Jones fluid.(14)

More recently the method was applied to the OCP (:*=0) (15) and we
consider here the case of the YOCP (:*{0).

The expression of the Yukawa potential on the hypersphere S3��i.e.,
the Green's function of the Helmholtz equation in S3��is derived in the
companion paper (hereafter refered as I) as well as all the formal expres-
sions (configurational energy, formal lower bounds, etc.) which are required
for simulations performed in this geometry. The aim of our simulations was
to provide input data for a model of equation of state (EOS) of the
Hydrogen and Deuterium plasmas which is discussed elsewhere.(16, 17)

Previous numerical studies by Hamaguchi et al.(1�4) did not cover a suffi-
ciently large domain of (:*, 1 ) in view of these applications. In order to
apply our results to the physical conditions of the last Nova experiments
of shock compressed liquid deuterium, (18) it appeared necessary to perform
MC simulations for 0.1�1�100 and for 0.1�:*�6.

Our paper is organized as follows. In Section II we present the
Hamiltonian of the YOCP in R3 and propose a new method for a precise
determination of the excess free energy. In Section III we give briefly some
technical details on the numerical procedure used in our MC calculations.
The datas are presented anal discussed in Section IV and the conclusions
are drawn in Section V.

II. THE MODEL

A. Yukawa Systems in RR3

Before considering the complicated case of the YOCP within hyper-
spherical boundary conditions, let us first discuss the usual Euclidean case.
We therefore consider a neutral classical plasma made of N identical point
charges q (ions) immersed in a uniform neutralizing background (electrons)
of volume 4 and charge density &qp. The configurational energy of the
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model has been given by Hubbard and Slattery(19) for cubico-periodical
geometries. In our case, we need a slight generalization of their expression
which reads as

V R3
(1,..., N )=

1
2

:
N

i=1

:
N

i{ j

v:(rij )& :
N

i=1
|

4
d 3r \v:( |r&ri | )

+
1
2 |

42
d 3r d 3r$ \2v:( |r&r$| )+NE (2.1)

In Eq. (2.1), v:(r) denotes the effective interactions between the ions due to
the polarizable background of electrons. The r.h.s. of Eq. (2.1) includes the
particle�particle, particle�background, and background�background inter-
actions as well as an additional constant NE which fixes the zero of energy,
the expression of which reads as

E=
1
2

lim
r � 0 _v:(r)&

q2

r & (2.2)

Note that if the term NE is included in V R3
(1,..., N ), the zero of energy is

defined with respect to the self-energy of a bare (Coulomb) charge rather
than that of an ``effective'' charge (i.e., a charge in the presence of the back-
ground). Of course, both self-energies diverge but their difference should
remain a finite quantity for any reasonable model.

The use of effective pair interactions to describe the influence of the
background is obviously a crude approximation. We make a still cruder
approximation by assuming that v:(r) is a Yukawa potential

v:(r)=q2 exp(&:r)
r

(2.3)

Mathematically v:(r) is the Green's function of Helmoltz equation in R3

which vanishes at infinity, i.e.,

(2&:2) v:(r)=&4?q2$3(r) (2.4)

The case :=0 corresponds to the usual OCP and, in the case :{0, we
deal with the YOCP. In the YOCP the influence of the background is;
taken into account in the frame of the linear response theory by assuming
that its dielectric constant has the simple expression

=(k)=1+:2�k2 (2.5)
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which can be obtained when the electrons are described in the frame of
either the linearised Debye�Huckel theory (LDH) or the Thomas�Fermi
theory.(20) In the former case we deal with a hot dilute electron gaz
whereas, in the latter, we deal with a cold and dense quantum gaz of elec-
trons. The explicit dependance of the screening parameter :#:(\, T ) upon
the density \ and the temperature T depends obviously on the model under
consideration. Note by passing, that, for Yukawa effective interactions, the
constant E is indeed a finite quantity, E=&q2:�2. More realistic dielectric
functions =(k) have been considered in the literature, (21�24) however it is
shown in ref. 17 that the Yukawa potential is a sufficiently good approxi-
mation in many cases.(17)

For sufficiently large systems (4 � �) the thermodynamic and struc-
tural properties of the YOCP depend on the sole dimensionless parameters
(:*, T ) and the expression (2.1) ;V R3

(1,..., N ) can be rewritten as

;V R3
(1,..., N )=

1
2

:
N

i=1

:
N

i{ j

exp(&:*rij )
rij

&N \ 31
2:*2+

1:*
2 + (2.6)

where the interparticle distances rij are measured in the unit of the ionic
radius ai .

Let us denote f =;F�N the excess reduced free energy per particle
(F#free energy) of the model. Its derivatives with respect to :* and 1, are
easily expressed as thermal averages of pair potentials:

f:*=
�f (:*, 1 )

�:*
=\ 3

:*3&
1
2+ 1+

1
2N � :

N

i=1

:
i{ j

exp(&:*r ij )� (2.7)

f1=
�f (:*, 1 )

�1
=

1
2N � :

N

i=1

:
N

i{ j

exp(&:*rij )
rij �&

3
2:*2&

:*
2

(2.8)

where ( } } } ) denotes a canonical average. Applying the second Stillinger�
Lovett sum rule(25) to the case of the OCP (:*=0), one easily shows that

lim
:* � 0

f:*=0 (2.9)

and, using the ideal gaz limit (valid for totally screened interactions) one
also obtains

lim
:* � +�

f:*=&1�2 (2.10)

Moreover, in the general case where the effective screening parameter :* of
the considered model depends on both the temperature and the density, the
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excess internal energy u and the excess pressure p are respectively given by

;u(:*, 1 )=; \�f (:*, 1 )
�; +=1 \�f (:*, 1 )

�1 ++; \�:*
�; +\

�f (:*, 1 )
�:* +

(2.11)
and

;p(:*, 1 )
\

=1+\ \�f (:*, 1 )
�\ +

=1+
1
3 \

�f (:*, 1 )
�1 ++\ \�:*

�\ +\
�f (:*, 1 )

�:* + (2.12)

B. Free Energy

In order to calculate the excess free energy, we devised an original
method which consists in integrating f:* with respect to :* rather than f1

with respect to 1 as usual.(26) We therefore write

f (:*, 1 )= f (:*=0, 1 )+|
:*

0

�f (:1* , 1 )
�:1*

d:1* (2.13)

which can be conveniently rewritten as

f (:*, 1 )= fOCP(1 )+ fYUK (:*, 1 ) (2.14)

where fOCP(1 ) is the excess free energy of the OCP which is known with
a high degree of precision from previous numerical studies.(15, 26)

Note that the numerical determination of f:* in an actual MC simula-
tions is conveniently obtained from Eq. (2.7). From the knowledge of f and
of its derivatives with respect to 1 and :*, and given the density and tem-
perature dependence of the screening parameter, all thermodynamic quan-
tities are determined using Eqs. (2.11), (2.12). Thus, the knowledge of the
density and temperature dependence of the screening parameter is sufficient
to determine self-consistently all thermodynamical properties, taking
advantage of the very precise MC data for fOCP .(15, 26)

III. NUMERICAL DETAILS

A. Expressions of the Thermodynamic Quantities on the
Hypersphere

The hypersphere S3 of center O and radius R is the set of points
OM=(x, y, z, t) of R4 which satisfy the relation x2+ y2+z2+t2=R2.
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S3 is a 3D non-Euclidean closed manifold of R4 of positive curvature
which is homogeneous and isotropic albeit finite and thus well adapted for
the numerical simulation of a fluid phase. Its volume is 4=2?2R3. The
Green's function of Helmholtz equation can be obtained analytically in S3

which makes the geometry appealing for numerical simulations of screened
Coulomb systems. The configurational energy of a YOCP made of N ions
of charge q confined in S3 was derived in paper I. It reads

;V S3
(1,..., N )=

;q2

2
:
N

i=1

:
j{i

vS3

: (�ij )+N;A (3.1)

where the pair potential vS3

: (�) (� # [0, ?]) is given by

vS3

: (�)=
1
R

sinh |(?&�)
sin � sinh |�

&
4?

:24
, for :R�1

=
1
R

sin |(?&�)
sin � sin |�

&
4?

:24
, for :R�1 (3.2)

where |=(|:2R2&1|)1�2. The pair potential vS3

: (�) is isotropic and
depends on the sole geodesic length R�. The geodesic distance between two
ions located respectively at points Mi and Mj of S3 being obviously given
by

dij=R�ij=R arccos \OMi } OMj

R2 + (3.3)

The constant A in Eq. (3.1) which fixes the zero of energy is the sum of
two contributions

;A=;AOCP+;$A (3.4)

the former being the constant which fixes the zero of energy of the OCP
(:=0) in S3 i.e., (15)

;AOCP=&
9

10
1&

31
4?R*

+
1

2R*d(�0) _
3
2

+sin2(�0)&
�0 sin2(�0)

d(�0) & (3.5)

d(�0)=�0&sin(�0) cos(�0)
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where �0=aS3�R, R*=R�aS3
(reduced radius of S3) and 1=;q2�aS3

(coupling parameter), aS3
being the ionic radius in S3 defined as the solution

of the following transcendental equation

2?\R3d(�0)=1

The second contribution $A to A vanishes when :=0 and reads as

;$A=
1
2 _

3
2?R*

&
| coth |?

R*
&

4?
:*24*& , for :R�1

=
1
2 _

3
2?R*

&
| coth |?

R*
&

4?
:*24*& , for :R�1 (3.6)

where :*#:aS3
is the reduced screening parameter and 4*#4�(aS3

)3 the
reduced volume.

One easily establishes that, in the canonical ensemble, the derivatives
of the reduced excess free energy f with respect to 1 and :* are given by
the following expressions

1 (�f��1 )=
1
N

(;V S3
(1,..., N )) (3.7a)

(�f ��:*)=
1
N

(;WS3
(1,..., N )) (3.7b)

which should be compared with their Euclidean counterparts (2.7) and (2.8).
In Eq. (3.7a)

;WS3
(1,..., N )=N(�;A��:*)&

1
2

:
N

i=1

:
j{i

wS3

: (�ij ) (3.8)

The pair function wS3

: (�) which enters Eq. (3.8) is given by

wS3

: (�)=
?:R

|
cosh |? sinh |(?&�)

sin � sinh2 |?

&
:R
|

(?&�) cosh |(?&�)
sin � sinh |�

&
4

?:3R3 (:R�1)

=
?:R

|
cos |? sin |(?&�)

sin � sin2 |?

&
:R
|

(?&�) cos |(?&�)
sin � sin |�

&
4

?:3R3 (:R�1) (3.9)

939Monte Carlo Simulations of YOCP



and the additive constant �;A��:*#�; $A��:* by

�; $A��:*=
1
2 _ 4

?:3R3+
:R
| \ |?

sinh2 |?
&coth |?+& (:R�1)

=
1
2 _

4
?:3R3+

:R
| \ |?

sin2 |?
&cot |?+& (:R�1) (3.10)

B. Numerical Evaluation of the Pair Functions

The way of performing MC simulations in S3 was described in many
previous papers(11, 15) and we discuss here only the numerical procedure
retained to compute the thermal averages (3.7). The pair functions vS3

: (�)
and wS3

: (�) which enter Eqs. (3.7) can been obtained with a high degree
of accuracy by simple interpolation schemes. Let us denote by f (�) either
(vS3

: (�)&vS3

: (?)) or (wS3

: (�)&wS3

: (?)). In both cases f (�) is a non
negative decreasing function of � for � # [0, ?]. In fact, the variable
X#(1&cos �) is more suitable for numerical purposes since, for a pair of
particles, the determination of Xij=1. &OMi } OMj �R2 is convenient and
requires only 8 floating point operations. We have evaluated f (X ) accord-
ing to the following scheme

v 0����1 : direct calculation of f (X ).

v �1����2 : Hermite quadratic interpolation of f (X ).(27)

v �2���?: linear interpolation of f (X ).

For a given number N of particles and a given screening parameter :*,
it is always possible to choose an interpolation interval $X=2�ngrid (ngrid#
number of points of the grid of interpolation), and a couple of angles �1

and �2 such that the relative precision on f (X ) is smaller than some
ascribed value p, \X # (0, 2]. This point was discussed in detail in the case
of the OCP.(15) As also discussed at length in the same reference, a relative
precision of p on the pair function f (X ) ensures that the numerical relative
error on either ;(V S3

(1,..., N )�N) or ;(W S3
(1,..., N )�N) is also smaller

than p. Obviously p must be chosen several orders of magnitude smaller
than the expected statistical errors which originate from the MC procedure.
In all our simulations ngrid=30000 and �1 and �2 where chosen such
that p=10&8. Moreover, for high :* and large system sizes, the function
f (�) vanishes at large �'s and was set to zero in this range in order to
speed up the calculations with no consequences on the precision of the MC
data.
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IV. NUMERICAL RESULTS

In a recent theory of the EOS of the totally ionized Hydrogen (or
Deuterium) plasma the authors propose a model for the screening of ion�ion
interactions which involves an effective Yukawa potential characterized by
an effective screening parameter :*(\, T ) which depends explicitly on the
density and temperature of the plasma.(16, 17) The thermodynamic conditions
(\, T ) of the last Nova experiments of shock compressed liquid Deuterium, (18)

correspond, within this theoretical scheme, to values of 1 in the range
[0, 100] and of :* in the range [0, 6]. None of the existing data provided
by the litterature(1�4, 21�24) cover these ranges of parameters. This state of
affairs motivated the present numerical study. In order to cover all thermo-
dynamical conditions of the Nova experiments it thus appeared necessary
to perform MC simulations for 1=0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 40.0,
60.0, 80.0, 100.0 and for :*=0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 2.0, 2.5, 3.0, 3.5,
4.0, 5.0, 6.0.

In all our simulations we considered systems of N=600 particles and,
for each state (1, :*), M=60_106 configurations were generated after equi-
librium. The relative statistical uncertainties on f:* and f1 which were calcu-
lated by a standard block analysis procedure, (28) are typically t5_10&4 or
less. Previous numerical studies on the OCP(15) have shown that the thermo-
dynamic limit is certainly riot reached for a system of N=600 ions. This is
of course also the case for the YOCP considered here. A finite size scaling
study was performed for some states (1, :*) and revealed that the differences
between the values of f:* and f1 calculated at the thermodynamical limit and
the values obtained for N=600 are slightly larger than the statistical errors
reported in the tables. Although possible in principle, a more systematic
study would require a prohibitive demand in CPU time.

The numerical results for f:* and f1 are reported in Tables I to IV.
Tables I and III correspond to the lowest values of 1 for f:* and f1 respec-
tively. Table II and IV give the same results for the highest values of 1.
These results are also displayed in Fig. 1 (for f:*) and in Fig. 2 (for f1 ). For
both functions the MC results are plotted versus :*, for different values
of 1. On Fig. 1, we observe the convergence of f:* towards its asymptotic
limits (2.9) and (2.10) for all values of 1.

We performed an analytical representation of f:* , (17) in the spirit of
previous parametrizations of the OCP.(26) Our fit, which represents the MC
datas for values of the coupling parameters in the ranges 0.1�1�100 and
0.1�:*�6.0, correctly reproduces the limiting laws (2.9) and (2.10). It
reads as

f:*=&a(:)_1&b1(:) 1 1�3&b2(:) 1 &1�3&b3(:) ln 1&b4(:) (4.1)
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Table I. MC Data for (�f ��:*) for Various Values of the Screening Parameter
:* and Low Values of the Coupling Parameter 1 a

:* 1=0.1 1=0.5 1=1 1=2 1=3 1=5

0.1 &0.014079(07) &0.038378(08) &0.058185(11) &0.089772(16) &0.117574(19) &0.168859(31)
0.2 &0.028869(10) &0.072870(26) &0.112460(31) &0.175154(42) &0.230675(27) &0.332921(65)
0.4 &0.043386(17) &0.126541(34) &0.203192(55) &0.327025(50) &0.436757(62) &0.639579(63)
0.6 &0.048774(15) &0.163291(29) &0.273335(48) &0.454300(55) &0.615888(67) &0.915069(70)
0.8 &0.050444(10) &0.188220(26) &0.326871(65) &0.559771(74) &0.769492(99) &1.16018(13)
1.0 &0.049901(16) &0.205037(16) &0.367078(25) &0.645942(84) &0.899809(98) &1.37464(17)
1.4 &0.050101(10) &0.224544(13) &0.416579(13) &0.770397(52) &1.09697(11) &1.71621(10)
2.0 &0.050021(5) &0.237232(10) &0.458414(23) &0.875265(45) &1.274377(45) &2.04700(9)
2.5 &0.049980(3) &0.241976(7) &0.473786(9) &0.919438(18) &1.355564(38) &2.206580(77)
3.0 &0.049963(2) &0.244589(5) &0.482437(10) &0.946689(12) &1.402317(25) &2.303074(48)
3.5 &0.049960(1) &0.246158(5) &0.487201(06) &0.962402(12) &1.432652(18) &2.362639(29)
4.0 &0.049960(1) &0.247148(4) &0.490891(7) &0.972883(10) &1.450698(11) &2.400764(14)
5.0 &0.049967(00) &0.248293(2) &0.494570(3) &0.984506(6) &1.471738(5) &2.444269(17)
6.0 &0.049981(00) &0.248885(1) &0.496577(2) &0.990022(6) &1.482356(4) &2.465331(8)

a In all simulations N=600. The numbers into brackets which correspond to one standard
deviation are the statistical uncertainties on the last digists.

Table II. MC Data for (�f ��:*) for Various Values of the Screening Parameter
:* and High Values of the Coupling Parameter 1 a

:* 1=10 1=20 1=40 1=60 1=80 1=100

0.1 &0.287361(27) &0.511486(31) &0.944902(35) &1.37156(6) &1.794920(98) &2.21626(8)
0.2 &0.569485(47) &1.016995(87) &1.882455(84) &2.73400(16) &3.57904(21) &4.42068(23)
0.4 &1.10843(26) &1.997104(99) &3.71545(17) &5.40623(18) &7.08495(26) &8.75547(30)
0.6 &1.60987(21) &2.92606(16) &5.47339(15) &7.98061(25) &10.46863(48) &12.9469(5)
0.8 &2.06938(11) &3.79474(15) &7.13638(22) &10.42583(30) &13.69144(63) &16.9425(5)
1.0 &2.48458(15) &4.59544(24) &8.68764(16) &12.71774(35) &16.71805(51) &20.7011(7)
1.4 &3.17852(15) &5.97625(24) &11.41260(19) &16.77166(24) &22.09301(36) &27.3930(4)
2.0 &3.90301(20) &7.49238(15) &14.50783(34) &21.43794(29) &28.32747(33) &35.1912(5)
2.5 &4.27683(16) &8.31833(16) &16.26212(23) &24.12849(53) &31.95622(44) &39.7605(3)
3.0 &4.51197(15) &8.85657(17) &17.43849(15) &25.95887(18) &34.44685(19) &42.9159(2)
3.5 &4.660517(48) &9.203643(65) &18.21202(28) &27.17396(21) &36.11224(22) &45.0351(3)
4.0 &4.756485(70) &9.429742(63) &18.72091(8) &27.97870(12) &37.21913(15) &46.4485(3)
5.0 &4.863746(30) &9.683686(51) &19.29401(7) &28.88743(7) &38.47203(12) &48.0506(1)
6.0 &4.916625(10) &9.808111(14) &19.57474(3) &29.33191(3)l &39.084351(45) &48.83373(9)

a In all simulations N=600. The numbers into brackets which correspond to one standard
deviation are the statistical uncertainties on the last digists.
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Table III. MC Data for (�f ��1 ) for Various Values of the Screening Parameter
:* and Low Values of the Coupling Parameter 1 a

:* 1=0.1 1=0.5 1=1 1=2 1=3 1=5

0.1 &0.025078(09) &0.234484(26) &0.569993(36) &1.320380(89) &2.11502(10) &3.76136(24)
0.2 &0.022806(11) &0.237856(32) &0.574891(39) &1.329089(84) &2.127020(75) &3.77994(20)
0.4 &0.027921(11) &0.250883(25) &0.595852(54) &1.363581(71) &2.17501(11) &3.85356(12)
0.6 &0.035211(11) &0.271683(33) &0.629442(46) &1.420260(71) &2.253640(92) &3.97551(11)
0.8 &0.043770(08) &0.298901(18) &0.674670(67) &1.497767(86) &2.361701(88) &4.14246(14)
1.0 &0.053547(11) &0.331462(24) &0.730088(38) &1.594062(89) &2.49639(10) &4.35253(17)
1.4 &0.072554(11) &0.407510(18) &0.867261(19) &1.834961(45) &2.83772(11) &4.88787(11)
2.0 &0.101831(06) &0.537569(14) &1.107244(19) &2.284408(48) &3.485319(66) &5.919369(89)
2.5 &0.126514(06) &0.653201(10) &1.329419(16) &2.710238(26) &4.105787(50) &6.923470(89)
3.0 &0.151300(04) &0.772083(11) &1.561305(18) &3.159931(13) &4.771561(37) &8.009956(64)
3.5 &0.176135(03) &0.892898(14) &1.799528(11) &3.626597(25) &5.462184(24) &9.148379(43)
4.0 &0.201013(03) &1.014927(12) &2.040238(15) &4.102366(17) &6.171883(18) &10.319776(24)
5.0 &0.250842(02) &1.260976(09) &2.528973(08) &5.071527(16) &7.619368(11) &12.718892(28)
6.0 &0.300718(04) &1.508574(05) &3.021952(06) &6.053875(17) &9.088413(12) &15.160941(19)

a In all simulations N=600. The numbers into brackets which correspond to one standard
deviation are the statistical uncertainties on the last digists.

Table IV. MC Data for (�f ��1 ) for Various Values of the Screening Parameter
:* and High Values of the Coupling Parameter 1 a

:* 1=10 1=20 1=40 1=60 1=80 1=100

0.1 &8.01012(23) &16.6977(4) &34.30821(54) &52.0346(10) &69.8191(16) &87.6414(11)
0.2 &8.04426(16) &16.7633(5) &34.43546(59) &52.2262(11) &70.0745(17) &87.9539(20)
0.4 &8.18187(23) &17.0258(4) &34.94766(58) &52.98780(69) &71.0821(10) &89.2139(12)
0.6 &8.40798(24) &17.4597(3) &35.79303(48) &54.24226(69) &72.7481(13) &91.2842(16)
0.8 &8.72032(24) &18.0584(3) &36.95988(49) &55.97561(63) &75.0449(15) &94.1475(09)
1.0 &9.11417(19) &18.8141(3) &38.43394(31) &58.16379(57) &77.94784(87) &97.7659(12)
1.4 &10.12314(19) &20.7549(3) &42.22329(19) &63.79378(36) &85.41589(48) &107.06738(48)
2.0 &12.09045(19) &24.5647(2) &49.68276(34) &74.88883(31) &100.13694(37) &125.41188(52)
2.5 &14.03323(15) &28.3560(2) &57.13663(22) &85.98961(54) &114.87827(39) &143.78807(36)
3.0 &16.15694(15) &32.5291(2) &65.37653(13) &98.27958(15) &131.21092(18) &164.15836(23)
3.5 &18.39852(6) &36.95738(7) &74.15211(27) &111.38914(21) &148.64682(23) &185.91740(21)
4.0 &20.71616(9) &41.55394(7) &83.28667(9) &125.0510(1) &166.83064(16) &208.61975(23)
5.0 &25.48596(4) &51.04540(7) &102.19834(8) &153.36877(8) &204.54777(14) &255.73225(11)
6.0 &30.35307(2) &60.75390(3) &121.57671(5) &182.41038(4) &243.24908(05) &304.09091(11)

a In all simulations N=600. The numbers into brackets which correspond to one standard
deviation are the statistical uncertainties on the last digists.
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Fig. 1. &(�f ��:) as a function of :* for various values of 1. From bottom to top
1=0.1, 0.5, 1, 2, 3, 5, 10, 20, 40, 60, 80, 100. The error bars on the displayed results, which
correspond to one standard deviation, are smaller than the symbol sizes. The solid lines are
the result of the fit (4.1).
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Fig. 2. &1 (�f��1 ) as a function of :* for various values of 1. From bottom to top
1=0.1, 0.5, 1, 2, 3, 5, 10, 20, 40, 60, 80, 100. The error bars on the displayed results, which
correspond to one standard deviation, are smaller than the symbol sizes. The solid lines are
the result of the fit (4.1).
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Table V. Coefficients of the Fit (4.1), (4.2)

i ai b1, i b2, i b3, i b4, i

0 0.895518 0.255048 0.227173 0.193532 0.039849
1 0.493174 0.113309 &2.15654 &1.29895 8.11973
2 &0.222818 10.0333 7.92197 &34.6655
3 3.47069 &5.37412 &4.53558 5.26751
4 0.002995 0.445334 &0.003648 &0.62045
5 1.568751 1.604841 1.740061 1.44286

where the coefficients are given by

a(:)= 1
2 (1&exp(&a0:)(1+a1:))

(4.2)

bi (:)=(1&exp&bi, 0:)(1+b i, 1 :+bi, 2:2+bi, 3 :3+bi, 4 :4) exp(&bi, 5:)

The numerical values of the constants which enter Eq. (4.2) are given
in Table V. The free energy f is then obtained from Eq. (2.13). Note that,
with this method, we take advantage of the very precise results already
known for the OCP.(15, 26) We stress again that the knowledge of f:* and
of the screening parameter :*(\, T ) is sufficient to determine self-con-
sistently all the thermodynamical properties of the system (see Eqs. (2.11)
and (2.12)).

V. CONCLUSION

In this work, we have determined the excess free energy of the YOCP
for a wide range of values of 1 and :* by means of MC simulations on a
hypersphere. Due to the large number of considered states a finite size
scaling study of the results, such as the one performed recently for the OCP
in ref. 15 was impossible. However as discussed in Section IV the values for
f obtained for N=600 differ only but slightly from their thermodynamic
limit and have been used extensively in a recent study of the Deuterium
EOS.(16) The results reported in this paper can be used to determine the
energy and the pressure of any model of plasma with an arbitrary depen-
dence of the screening parameter :* upon the density and the temperature
as discussed in Section IV. Besides this study of the thermodynamic proper-
ties of the YOCP we have also computed the microfield distribution func-
tions, these results are discussed elsewhere.(29)
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